
Digital Implementation of On-Chip Hebbian
Learning for Oscillatory Neural Network

Edgar Luhulima1, Madeleine Abernot2, Federico Corradi1, and Aida Todri-Sanial1,2 (a.todri.sanial@tue.nl)
1Eindhoven Univ. of Technology, Eindhoven, Netherlands, 2LIRMM, Univ. of Montpellier, CNRS, Montpellier, France

Abstract—This work proposes a digital implementation of an
Oscillatory Neural Network (ONN) in a Field-Programmable
Gate Array (FPGA), demonstrating excellent associative memory
capabilities. This work goes beyond previous implementations by
enabling on-chip learning directly in the FPGA. More specifically,
we implement on-chip Hebbian learning, and we compare three
different design strategies. The first strategy takes advantage of
a System-on-Chip (SoC) composed of a Processing System (PS)
and Programmable Logic resources (PL) to integrate Hebbian
learning in PS. The two other strategies implement the Hebbian
learning directly in PL. We compare the three different design
strategies on a digit recognition task in terms of accuracy,
utilization, execution time, and maximum frequency. We show
that implementing Hebbian learning in PL gives more advantages
in terms of resource utilization and latency than implementing
Hebbian in PS with several orders of magnitude because the
weight matrix computation is performed in hardware. Moreover,
we develop an application interface to demonstrate the pattern
learning and recognition capabilities of our digital ONN imple-
mentation.

Keywords: Artificial intelligence, auto-associative memory, pattern
recognition, oscillatory neural network, FPGA implementation, Heb-
bian learning

I. INTRODUCTION

In the past few years, there has been a rising trend of employing
machine learning instead of traditional computing to perform tasks
that previously seemed impossible to be performed by conventional
machines. For example, machine learning technique as Artificial
Neural Networks (ANN) has been used to perform object recognition
[1], character recognition [2], and even speech recognition [3].
Different techniques have been explored to keep up with the growing
constraints, especially with embedded applications. One of these
constraints is power. One approach to employ a neural network with
low power that suits embedded devices is Oscillatory Neural Network
(ONN) [4]. ONN is a network of coupled oscillators with unique
phase and frequency dynamics that can be used to perform low-
power parallel computation [5, 6]. ONN has good associative memory
capability [7] such that it can memorize patterns and retrieve them
from corrupted input information. Also, different solutions has been
explored to implement ONN in hardware, in analog [8], mixed analog
and digital [9], or even fully-digital [10]. This paper focuses only
on the digital implementation of the ONN from [10]. The current
digital implementation is implemented in an FPGA. This digital
implementation showcases a good associative memory capability of
the ONN. However, the learning part of this ONN is still performed

This work was supported by the European Union’s Horizon 2020 research
and innovation program, EU H2020 NEURONN (www.neuronn.eu) project
under Grant 871501 and Horizon EU research and innovation program, Hori-
zon EU PHASTRAC (https://phastrac.eu) project under Grant no. 101092096.

Fig. 1: Oscillatory Neural Network computing paradigm.

off-chip, meaning the weights are hard-coded every time the ONN is
trained.

Recently, authors in [11], proposed a solution to enable on-chip
learning, with the digital ONN taking advantage of the processing
system (PS) of a Zynq processor. They performed on-chip learning
with Hebbian and Storkey learning rules on a 15-neuron ONN
configured for digit recognition. In this paper, we propose two other
solutions to implement on-chip Hebbian learning [12] using the
Programmable Logic (PL) resources of the Pynq FPGA board, and we
compare the three solutions in terms of resource utilization. Finally,
we also propose an application interface to demonstrate the pattern
learning and recognition performances of our digital ONN solutions
on a digit recognition application.

This paper is organized as follows. Section II describes the ONN
computing paradigm, its auto-associative memory properties, and
the digital implementation on FPGA. Then, Section III explains the
different design approaches to implement on-chip Hebbian learning
digitally. After, Section IV highlights the measurement results which
validate each design, and compares the three design solutions. Sec-
tion IV also presents the application demonstration on digit recogni-
tion. Finally, Section V discusses the advantages and limitations of
the different solutions.

II. OSCILLATORY NEURAL NETWORKS

A. Computing paradigm
Oscillatory Neural Networks (ONNs) [13, 14, 15] are brain-

inspired computing models emulating neural oscillations from the
brain. In ONNs, each neuron is an oscillator coupled with synaptic
elements [16]. In this work, we consider phase-based ONNs which
encode information in the phase relationship between oscillators.
For example, if we consider bipolar information {−1, 1}, a {−1}
represents an oscillator with 0o phase, while a {+1} represents an
oscillator with 180o phase. Phase-computing ONNs use the natural
phase synchronization behavior of coupled oscillators to compute in
parallel. Thus, using phase computing allows for fast and parallel
computation while possibly reducing the voltage amplitude and so979-8-3503-1175-4/23/$31.00 ©2023 IEEE

limiting the power consumption [5], making ONN attractive for edge
AI. During training, couplings between oscillators are configured
depending on the task to solve. Then, inference starts with the
initialization of each oscillator with the input phase information.
Then, thanks to coupling, oscillators interact among them and phases
evolve in time until stabilization. Reading the stable oscillator’s
phases gives the ONN output solution, see Figure 1.

B. Auto-associative memory
ONN configured with fully-connected architecture using unsuper-

vised learning rules is known to perform auto-associative memory
or pattern recognition tasks [7], like in Hopfield Neural Networks
(HNNs) [17]. In this case, the network memorizes patterns in its
coupling using some unsupervised learning rules such that when the
network is initialized with a corrupted input pattern, it will evolve
and stabilize to one of the memorized patterns. The main learning
algorithm used to configure ONN or HNN for pattern recognition is
the unsupervised Hebbian learning rule [12]. Hebbian configures the
synaptic weights Wij between neuron i and neuron j following:

W p
ij =

∑
p

σp
i σ

p
j (1)

with Wii = 0 and p the number of memorized or training patterns
σ. There are other unsupervised learning rules which can be used to
train ONN for pattern recognition and give better capacity, meaning
being able to learn and retrieve more patterns. However, Hebbian is
the simplest algorithm, and so the easiest to implement. Thus, in this
paper, we only consider the Hebbian learning rule.

C. Digital ONN implementation
In this work, we focus on enabling on-chip learning for an

ONN implemented on FPGA. A first fully-digital ONN design was
introduced in [10] without the on-chip learning capability. In [10]
each neuron is a phase-controlled digital oscillator allowing 16 phase
stages, and each synapse is a 5-bits signed register. Then, a first
solution to perform on-chip learning with the previous digital ONN
design was introduced in [11] proposing to take advantage of the PS
of a Zynq processor to implement Hebbian and Storkey learning rules
in a 15-neuron ONN configured for digits recognition. In this work,
we study two other solutions to enable on-chip Hebbian learning
with the digital ONN on FPGA and compare the scalability of each
solution.

III. DESIGNS AND METHODS

A. Design exploration
The weights for the ONN determine the coupling between two

distinct neurons. In the current implementation, these weights are
computed off-chip using the Hebbian learning rule, see Figure 2.
This learning rule requires arranging the learning patterns into a
column vector. Each element of the vector is bipolar (-1/1.) Multiple
learning patterns translate to multiple column vectors, which are then
appended to form a matrix. The matrix rows are equal to the number
of neurons in the ONN. The matrix is multiplied with its transpose,
and the diagonal elements of the product are set to 0, see Equation
(1). The resulting square matrix defines the weights for the ONN of
which the size is determined by the number of neurons. Figure 2
and Equation (1) illustrate the computation of the weights. The term
Hebbian learning and weights computation are used interchangeably
in this paper.

The weights are embedded into the hardware description code of
the ONN which is then programmed into the FPGA. This limits the
flexibility of modifying the learning patterns, therefore the weights,
of the ONN after the FPGA is programmed. It prevents the possibility
of on-chip learning. This chapter describes the different design
variations that were explored in order to realize the implementation

Fig. 2: Hebbian learning rule in the form of matrix multi-
plication. (A) Matrix of 2 learning patterns for 5 neurons.
(B) Transposed matrix. (C) Square matrix product of matrix
multiplication. (D) Weights with diagonal elements equal to
0.

of on-chip Hebbian learning. This allows for the computation of the
weights for the ONN to be executed on chip. In this paper, we
discuss three designs. These designs make use of the two units in
modern FPGAs, the PS and the PL. Figure 3 illustrates the block
diagram of each design variation. The first design, introduced in
[11], incorporates Hebbian learning, indicated as the Hebb block in
the diagram, as a part of the application software running on the PS.
The second and third design integrate Hebbian learning as a hardware
block in the PL.

(a) Hebbian learning in PS

(b) Hebbian learning in PL

(c) Hebbian learning in PL with a dedicated hardware

Fig. 3: Design variations of the on-chip Hebbian learning

1) ONN with Hebbian learning in PS: The Hebbian learning
in PS method, from [11], is designed as a function that computes
the weights for the ONN in the application software. It is depicted
in Figure 3a. The application software applies the Hebbian learning
rule to each learning vector sequentially and accumulates the result
in a weight matrix. This is a different technique than the one used
in off-chip Hebbian learning. Instead of forming a matrix from
different learning vectors, learning vectors are processed sequentially
to produce a weight matrix. This process requires a multiplication
between a vector with its transpose and an accumulation with
previous results. After all learning vectors are processed, the final
weight matrix is transmitted from PS to the Scheduler block in PL

through the AXI interface. The Scheduler is a control unit for the
ONN block. It bridges the communication between the application
software and the ONN. It writes the weights to the ONN during
training. During inference, it writes the test pattern to the ONN
and reads back the inference result, which is then transmitted to
the application software. While this design is a solution for on-chip
learning, the weights computation is still executed in software which
is relatively slow compared to hardware. To maximize the benefit of
implementation in an FPGA, we explored other designs that directly
exploit PL hardware during the learning process.

2) ONN with Hebbian learning in PL: The Hebbian learning
in PL integrates the learning or weights computation as hardware to
the ONN block as shown in Figure 3b. Since the learning is executed
in hardware, the performance in terms of execution time should im-
prove. The weights computation is added to the hardware description
language of the ONN. In contrast to the Hebbian learning in PS,
the application software sequentially transmits the learning vectors
instead of the weight matrix to the Scheduler. The Scheduler, which
controls the ONN, writes the vectors to the ONN during training. The
processing of the vectors is consequently executed sequentially in the
ONN block. It multiplies a vector with its transpose, then the result is
accumulated. During inference, it writes the test pattern to the ONN
block and reads back the inference result. The drawback of this design
is that it lacks parallelism since the multiplication and accumulation
for each element of the vectors are performed serially. It also utilizes
more resources in the FPGA in comparison to the previous design
because of the addition of the learning block as hardware.

3) ONN with Hebbian learning in PL with a dedicated
hardware: The last design uses a separate dedicated hardware
for Hebbian learning, as shown in Figure 3c, whose purpose is to
add parallelism to the weight matrix computation. This dedicated
hardware, represented by the Hebb block in the diagram, is a multiply
and accumulate (MAC) unit. During training, the Scheduler receives
the learning vectors from the application software and writes them
to the MAC unit. The MAC unit has two data inputs, A and B. It is
illustrated in Figure 4 for a learning vector of size 5. Elements of the
learning vector are pushed serially into the multiplier through input
A. The elements of the transposed vector are pushed in parallel to
input B. As an improvement to the previous design, the multiplication
result for a single column of the weight matrix is computed in a
single clock cycle. This result will be accumulated with the previous
results in the accumulator. The accumulator also acts as a weights
buffer for the ONN. The Scheduler, similar to previous designs, writes
the test pattern to the ONN, reads back the inference result and
transmits it to the application software during inference. Because
some computations are parallelized, this design should yield a better
execution time for learning than the previous design.

Fig. 4: MAC unit for a learning vector of size 5

B. FPGA Implementation
As a proof of concept, all three designs are implemented and

tested on a PYNQ-Z2 board, which integrates a Dual ARM Cortex-
A9 processor with 85K of programmable logic cells and 630 KB of
block RAM. The board is supported by a Jupyter-based framework
and Python APIs. These APIs provide access to the low-level control

of the hardware on PYNQ. They also allow the overlay, which
configures the architecture of the FPGA, to be loaded through a
Python interface. Xilinx’s Vivado is used in the development of the
digital design and the generation of bitstream. A pattern, in the form
of numerical digits, is chosen to showcase the associative memory
capability of the ONN. A 5x3 ONN is set up on the FPGA and
trained to learn digit 0, 1, and 2. Then a fuzzy digit is presented
to the ONN during inference. A set of fuzzy digits is divided into
3 groups. Each group corresponds to each learning digit. In this
setup, a learning pattern or digit consists of 15 black-and-white
pixels represented in bipolar values. On the other hand, a fuzzy
digit can contain a fractional value between -1 and 1 to indicate
a grayscale pixel. This grayscale pixel represents a corrupted pixel
in this application. Hamming distance (HD) is used as the metric to
determine the fuzziness of a digit. The HD value determines how
many pixels deviate from its corresponding learning digit. Figure 5
illustrates the fuzzy digits with different HDs.

Fig. 5: Fuzzy digits 0,1,2 with HD = 1,2,3 respectively, and
their corresponding learning digit.

The application software loads the overlay and controls the com-
munication between PS and PL. The communication between PS
and PL depends on the design. For Hebbian learning in PS, the
software sends the computed weight matrix and the fuzzy digits to
PL. For the other designs, the software sends the learning and fuzzy
digits to PL. In all three designs, the software carries the retrieval
of the inference result from PL. The user-defined learning and fuzzy
digits are written in the software code. This software is mainly used
for testing and for comparing the designs. In the demo, which is
later described in section IV, a user interface feature is added to the
software, allowing users to define the learning and fuzzy digits in
real time. The Scheduler handles every data transfer to and from PL.
State machines in the Scheduler handles the data transfer with the
AXI, Hebb, and ONN blocks. The clock frequency for these blocks
can be configured by modifying the clock divider in the Scheduler. To
compare the learning and inference execution time between designs, a
clock cycle counter is included in the Scheduler. This counter counts
the number of clock cycles taken for performing the learning and
inference.

IV. RESULTS

A. Design comparison and test
Several design metrics are used to compare these designs. They

consist of error rate, utilization, execution time and maximum clock
frequency. The three designs are implemented on the PYNQ board
for tests and measurements. How the design metrics are measured
and the results are discussed in this chapter.

1) Error rate: The accuracy of all three implementations can
be determined by their error rates. The error rate can help identify
the correlation between the number of learning digits and the ability
of the ONN to recognize fuzzy digits. The error rate is calculated
as the number of errors divided by the number of fuzzy digits. An

Fig. 6: Resource utilization of the 3 implementations

error is defined as when a fuzzy digit is incorrectly recognized by the
ONN. The test results of the three implementations show that they
produce the same error rate across different combinations of learning
digits and HDs. The test was performed on a 5x3 (15 neurons) ONN.
Table I shows the error rate of all three on-chip Hebbian learning
implementations. The different combinations of 2 and 3 learning
digits of digit 0,1,2 were tested. Each digit has 15 randomly generated
and distinct fuzzy numbers for each HD. Thus, 45 fuzzy digits are
used in total. HD = 1,2,3 are used in this test.

TABLE I: Error rate of all three on-chip Hebbian learning
implementations for 5x3 ONN

Learning digits HD #Fuzzy digits Errors Error rate (%)
0,1 1 30 0 0
0,1 2 30 0 0
0,1 3 30 0 0
0,2 1 30 0 0
0,2 2 30 1 3.34
0,2 3 30 4 13.34
1,2 1 30 0 0
1,2 2 30 0 0
1,2 3 30 0 0

0,1,2 1 45 3 6.67
0,1,2 2 45 4 8.89
0,1,2 3 45 11 24.44

The result shows that the error rates of 2 learning digits, with
respect to the HD, are lower than 3 learning digits. Thus, the error
rate increases with the number of learning digits. It also increases
with the HD.

2) Utilization: The size of the FPGA implementation is deter-
mined by the number of utilized resources. The resource utilization of
the three implementations are compared by observing their number
of synthesized LUTs and registers in Vivado. Figure 6 shows the
number of utilized resources for LUTs and registers vs the number
of neurons in the ONN. For Hebbian learning in PS, only the size
of the ONN block is observed. For Hebbian learning in PL and PL
(MAC), the total size of the ONN and Hebb block is observed. The
Scheduler block is not included in this observation because the size
is insignificant compared to other blocks and it grows linearly with
the number of neurons. The number of neurons is increased to see
how the number of utilized resources grows. The result shows that

the number of synthesized LUTs for Hebbian learning in PL and PL
(MAC) has a polynomial growth. This is because as the number of
neurons increases, the weight matrix increases by a factor of n2. The
discrepancy in the number of synthesized LUTs between Hebbian
in PL and Hebbian in PL (MAC) is because the weight matrix
computation in Hebbian in PL (MAC) is pipelined. It removes the
need to finish the multiplication before performing the accumulation.
Thus, reducing the number of LUTs. The number of synthesized
LUTs for Hebbian in PS grows almost exponentially. This is because
the processing of the weight matrix increases by a factor of n2 in
the ONN block. The processing requires a large portion of the LUTs
because it needs to sequentially parse the incoming weight matrix
data. The numbers of synthesized registers for all 3 implementations
show relatively the same growth and no significant discrepancies. The
maximum number of neurons that can be implemented on the PYNQ
board for Hebbian in PL (MAC) is 60. For Hebbian in PS and PL
is 30. This is limited by the number of available LUTs on PYNQ.
It can be concluded that Hebbian in PL (MAC) is a better choice
among the other two for an application that requires a large number
of neurons.

3) Execution time and maximum clock frequency: Execution
time and maximum clock frequency are important metrics, especially
for an application requiring a real-time constraint. Therefore, we must
determine the execution time for the learning and inference and the
maximum implementation frequency. This test was performed on a
5x3 ONN. The average learning period for Hebbian in PS is measured
by measuring the average time span (µs) to learn a digit. In Hebbian
in PL and PL (MAC), this is performed by using a counter in the
Scheduler. This counter counts the number of clock cycles between
the moment it is triggered and stopped. The Scheduler triggers the
counter when the learning starts and stops it when the learning is
done. The average inference period for all three implementations
was also measured using a counter. The maximum clock frequency
is determined by evaluating the timing analysis in Vivado. Table
II shows the execution time and maximum clock frequency of the
three designs. Hebbian in PL and PL (MAC) spend almost the
same clock cycles for inference. Hebbian in PS is a little bit faster
because the ONN block is more optimized. The average learning
speed for Hebbian in PL (MAC), independent of their maximum
clock frequencies, is 8x faster than Hebbian in PL. This is due to
the parallelism in the weight matrix computation. At their maximum
frequencies of 65 and 41 MHz, Hebbian in PL and PL (MAC) can
perform learning 280x and 1500x faster than Hebbian in PS. In
conclusion, Hebbian in PL and PL (MAC) are faster than Hebbian in

TABLE II: Execution time and maximum clock frequency for 5x3 ONN

Design
Average

learning period
(clock cycles)

Average
inference period

(clock cycles)

Maximum
clock frequency

(MHz)

Hebbian learning in PS 700 (*) 157 32.5

Hebbian learning in PL 162 218 65

Hebbian learning in PL (MAC) 19 217 41

(*) in µs instead of clock cycles because the learning period is measured in the application software.

PS because the weight matrix computation is performed in hardware
and they have higher maximum clock frequencies. Thus, they are a
better choice for an application that requires low latency.

B. Pattern recognition demo
The pattern recognition demo aims to showcase the associative

memory capability with a user-defined pattern in real time. This demo
enables users to create their own pattern and verify if the ONN can
recognize it from a fuzzy representation. The demo is performed
using the Jupyter platform, which runs a demo application from the
ARM core of the PYNQ board. A 5x3 ONN is used for the demo with
the Hebbian in PL (MAC) design. Figure 7 illustrates the complete
demo setup with a PYNQ-Z2 board and the user interface. The user
interface consists of 3 grid boxes namely the Learning, Input, and
Output pattern grid boxes. In the Learning pattern grid box, a user
can create the desired pattern. This pattern is comprised of black
and white pixels. The Learn button sends the pattern to the ONN for
learning. The Reset ONN button resets the weights in the ONN. The
Input pattern grid box is used to generate the fuzzy pattern. The fuzzy
pattern is comprised of black, white and grayscale pixels. The Send
button sends the fuzzy pattern for inference. Finally, the inference
result will be displayed in the Output pattern grid box.

V. DISCUSSION

This chapter discusses the advantages and limitations of the
different learning method designs of digital ONN on FPGA. All
three designs show the same performance in terms of accuracy for
5x3 ONN. The test shows that the accuracy can be improved by
limiting the number of learning patterns. Another way to improve the
accuracy is to resort to a more advanced learning rule. The results
show that Hebbian in PL and PL (MAC) yield a better resource
utilization trend of synthesized LUTs than Hebbian in PS. This is due
to the handling of weight matrix data in the ONN block of Hebbian
in PS which consumes a lot of resources. The number of utilized
resources can be minimized by optimizing the data parsing in the
ONN block. Hebbian in PL (MAC) is slightly better than Hebbian
in PL as it can offer more neurons i.e. larger ONN size. For the
current implementation in PYNQ board, the maximum number of
neurons Hebbian in PL (MAC) is 60 and Hebbian in PL is 30. For
both designs, optimization on the Hebb and ONN block can help
improve the number of resource utilization for example by adding
more pipelines. Hebbian in PL and PL (MAC) are again better than
Hebbian in PS in terms of overall execution time and maximum
clock frequency. The bottleneck of the overall execution time of
Hebbian PS lies on the Hebb block which is implemented in software.
It can be concluded that the MAC unit significantly improves the
average learning period in hardware. The average inference period,
for Hebbian in PL and PL (MAC), can be improved by optimizing
the ONN block to have more parallelism on the processing of the
inference data. This test shows that implementing Hebbian learning in
hardware gives more advantage in terms of execution time or speed.
One of the limitations of the Hebb learning designs is the memory
size which determines the maximum number of stored patterns. The
memory size is determined by the number of encoding bits of the

weight. Each weight is encoded in a 5-bit signed integer for Hebbian
in PS and PL, and a 6-bit signed integer for Hebbian in PL (MAC).
Since the weight is computed off the bipolar learning vector elements
by the Hebbian learning rule, the memory size can be formulated as
memory size = 2n

2
to calculate the memory size. Variable n represents

the number of encoding bits. The term in the denominator is a result
of using signed integer. The number of learning patterns is used as
the unit for the memory size.

In this case, the Hebbian in PS and PL can only store a maximum
of 16 patterns. While the Hebbian in PL (MAC) can store up to 32
patterns. The memory size grows exponentially with the number of
encoding bits. Increasing the number of encoding bits will have an
impact on the number of utilized resources. Increasing the number
of stored patterns above the limit will result to a loss of information
due to overflow on the signed integer.

VI. CONCLUSION

In summary, this paper provides three unique designs for on-chip
Hebbian learning in a digital implementation on FPGA. They serve
a purpose which is to make an on-chip learning possible. These
designs make use of the PS and PL units in an FPGA. The first
design incorporates the Hebbian learning to the PS. The second
design integrates the Hebbian learning into a hardware block in PL.
The last design also integrates the Hebbian learning into a hardware
block but it provides more parallelism, as it uses a dedicated MAC
unit for the weight matrix computation. Several design metrics are
used to compare these designs. In terms of error rate, they show
an identical performance. The error rate increases with the number
of learning digits and Hamming distance. Hebbian in PL (MAC)
utilizes the least LUTs amongst the three. The utilization of Hebbian
in PL and PL (MAC) has a polynomial growth as the number of
neurons increases. While the utilization of Hebbian in PL grows
almost exponentially. It is due to the processing of the incoming
weight matrix data in the ONN block. The maximum number of
neurons that can be implemented on PYNQ-Z2 board for Hebbian
in PL (MAC) is 60, while for Hebbian in PL and PS is 30. Thus,
Hebbian in PL (MAC) is a better choice for an application that
requires a large number of neurons. Hebbian in PL and PL (MAC)
performs learning and inference faster than Hebbian in PS, resulting
in a better choice for an application that requires low latency.

REFERENCES

[1] J. Redmon et al. “You Only Look Once: Unified, Real-
Time Object Detection”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 779–788. DOI: 10.1109/CVPR.2016.91.

[2] L.D. Jackel et al. “A neural network approach to hand-
print character recognition”. In: COMPCON Spring ’91
Digest of Papers. 1991, pp. 472–475. DOI: 10 .1109 /
CMPCON.1991.128851.

Fig. 7: Pattern recognition demo running on a PYNQ-Z2 board with a user interface.

[3] W. Xiong et al. “The microsoft 2016 conversational
speech recognition system”. In: 2017 IEEE ICASSP.
2017, pp. 5255–5259. DOI: 10 . 1109 / ICASSP. 2017 .
7953159.

[4] A. Raychowdhury et al. “Computing with networks of
oscillatory dynamical systems”. In: Proceedings of the
IEEE 107.1 (2019), pp. 73–89. DOI: 10 . 1109 / jproc .
2018.2878854.

[5] C. Delacour et al. “Energy-Performance Assessment of
Oscillatory Neural Networks Based on VO 2 Devices
for Future Edge AI Computing”. In: IEEE Transactions
on Neural Networks and Learning Systems (2023),
pp. 1–14. DOI: 10.1109/TNNLS.2023.3238473.

[6] A. Todri-Sanial et al. “How Frequency Injection Lock-
ing Can Train Oscillatory Neural Networks to Compute
in Phase”. In: IEEE Transactions on Neural Networks
and Learning Systems 33.5 (2022), pp. 1996–2009. DOI:
10.1109/TNNLS.2021.3107771.

[7] F.C. Hoppensteadt and E.M. Izhikevich. “Associative
memory of weakly connected oscillators”. In: Proceed-
ings of ICNN’97. Vol. 2. Houston, TX, USA: IEEE,
1997, pp. 1135–1138. ISBN: 978-0-7803-4122-7. DOI:
10.1109/ICNN.1997.616190.

[8] R. Shi et al. “On the design of phase locked loop
oscillatory neural networks: Mitigation of transmission
delay effects”. In: 2016 IJCNN. 2016, pp. 2039–2046.
DOI: 10.1109/IJCNN.2016.7727450.

[9] Th. Jackson, S. Pagliarini, and L. Pileggi. “An Oscil-
latory Neural Network with Programmable Resistive
Synapses in 28 Nm CMOS”. In: 2018 IEEE ICRC.
McLean, VA, USA, Nov. 2018, pp. 1–7. DOI: 10.1109/
ICRC.2018.8638600.

[10] M. Abernot et al. “Digital implementation of oscillatory
neural network for image recognition applications”. In:

Frontiers in Neuroscience 15 (2021). DOI: 10 . 3389 /
fnins.2021.713054.

[11] M. Abernot, Th. Gil, and A. Todri-Sanial. “On-Chip
Learning with a 15-neuron Digital Oscillatory Neural
Network Implemented on ZYNQ Processor”. In: Pro-
ceedings of the ICONS 2022. ICONS ’22. New York,
NY, USA: Association for Computing Machinery, Sept.
2022, pp. 1–4. DOI: 10.1145/3546790.3546822. URL:
https://doi.org/10.1145/3546790.3546822.

[12] R.G.M Morris. “D.O. Hebb: The Organization of Be-
havior, Wiley: New York; 1949”. In: Brain Research
Bulletin 50.5-6 (1999), p. 437. DOI: 10 .1016/s0361-
9230(99)00182-3.

[13] N. Shukla et al. “Ultra low power coupled oscillator
arrays for computer vision applications”. In: 2016 IEEE
Symposium on VLSI Technology. June 2016, pp. 1–2.
DOI: 10.1109/VLSIT.2016.7573439.

[14] G. Csaba and W. Porod. “Coupled oscillators for com-
puting: A review and perspective”. en. In: Applied
Physics Reviews 7.1 (Mar. 2020), p. 011302. DOI: 10.
1063/1.5120412.

[15] C. Delacour et al. “Oscillatory Neural Networks for
Edge AI Computing”. In: July 2021, pp. 326–331. DOI:
10.1109/ISVLSI51109.2021.00066.

[16] C. Delacour and A. Todri-Sanial. “Mapping Hebbian
Learning Rules to Coupling Resistances for Oscillatory
Neural Networks”. In: Frontiers in Neuroscience 15
(2021). ISSN: 1662-453X.

[17] J. J. Hopfield. “Neurons with graded response have
collective computational properties like those of two-
state neurons.” en. In: Proceedings of the National
Academy of Sciences 81.10 (May 1984), pp. 3088–3092.
DOI: 10.1073/pnas.81.10.3088.

